首页> 外文OA文献 >Universal transport signatures in two-electron molecular quantum dots: gate-tunable Hund's rule, underscreened Kondo effect and quantum phase transitions
【2h】

Universal transport signatures in two-electron molecular quantum dots: gate-tunable Hund's rule, underscreened Kondo effect and quantum phase transitions

机译:双电子分子量子点中的通用传输特征:   门可调的Hund规则,未公开的Kondo效应和量子相位   过渡

摘要

We review here some universal aspects of the physics of two-electronmolecular transistors in the absence of strong spin-orbit effects. Severalrecent quantum dots experiments have shown that an electrostatic backgate couldbe used to control the energy dispersion of magnetic levels. We discuss how thegenerically asymmetric coupling of the metallic contacts to two differentmolecular orbitals can indeed lead to a gate-tunable Hund's rule in thepresence of singlet and triplet states in the quantum dot. For gate voltagessuch that the singlet constitutes the (non-magnetic) ground state, onegenerally observes a suppression of low voltage transport, which can yet berestored in the form of enhanced cotunneling features at finite bias. Moreinterestingly, when the gate voltage is controlled to obtain the tripletconfiguration, spin S=1 Kondo anomalies appear at zero-bias, with non-Fermiliquid features related to the underscreening of a spin larger than 1/2.Finally, the small bare singlet-triplet splitting in our device allows tofine-tune with the gate between these two magnetic configurations, leading toan unscreening quantum phase transition. This transition occurs between thenon-magnetic singlet phase, where a two-stage Kondo effect occurs, and thetriplet phase, where the partially compensated (underscreened) moment is akinto a magnetically "ordered" state. These observations are put theoreticallyinto a consistent global picture by using new Numerical Renormalization Groupsimulations, taylored to capture sharp finie-voltage cotunneling featureswithin the Coulomb diamonds, together with complementary out-of-equilibriumdiagrammatic calculations on the two-orbital Anderson model. This work shouldshed further light on the complicated puzzle still raised by multi-orbitalextensions of the classic Kondo problem.
机译:我们在这里回顾了在没有强自旋轨道效应的情况下两电子分子晶体管物理学的一些普遍方面。几个最近的量子点实验表明,静电背栅可用于控制磁能级的能量分散。我们讨论了金属触点到两个不同分子轨道的一般不对称耦合如何在量子点中存在单重态和三重态的情况下确实导致门可调的洪德定律。对于使单线态构成(非磁性)基态的栅极电压,通常会观察到对低压传输的抑制,该传输仍可以在有限偏置下以增强的共隧道特性的形式恢复。更有趣的是,当控制栅极电压以获得三重态配置时,自旋S = 1 Kondo异常出现在零偏置处,其非铁电液体特征与自旋的过筛有关,大于1/2。我们设备中的三重态分裂允许在这两种磁性结构之间对栅极进行微调,从而实现了非屏蔽的量子相变。这种过渡发生在非磁性单重态阶段(发生两阶段的近藤效应)和三重态阶段之间,在三重态阶段中,部分补偿(欠屏蔽)的力矩类似于磁性“有序”状态。通过使用新的数值重归一化组模拟,这些观察从理论上被放到了一致的全局图中,旨在捕捉库仑钻石中的尖锐的电压-伏特隧道效应,以及在两个轨道的安德森模型上的补充平衡外图计算。这项工作应进一步阐明经典近藤问题的多轨道扩展仍然引起的复杂难题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号